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Abstract. We use thermodynamically self-consistent integral equation theories to determine the
structure of binary hard-sphere mixtures in a regime of moderate to high size asymmetry, and for low
concentration of the species with bigger particle size. Calculations are performed by applying the
generalized mean-spherical approximation (GMSA) and the Rogers–Young (RY) approximation.
The thermodynamic consistency of the GMSA is implemented in terms of adjustable parameters
which are used in order to reproduce the Mansoori–Carnahan–Starling–Leland equation of state,
and to impose the equality of the osmotic isothermal compressibilities estimated through the
virial and fluctuation routes. The structural results obtained for a moderate size asymmetry
of the particle species compare rather satisfactorily with the available Monte Carlo (MC) data
and their parametrizations, and with previously reported modified hypernetted-chain results. The
relative performances of the GMSA and of the RY approximations are also examined for strongly
asymmetric mixtures. A regime of semi-dilute concentration for which no simulation data are
available is investigated first and a very close agreement emerges between the RY and GMSA
radial distribution functions. The case of very high dilution of the component with bigger particle
size, for which RY and MC results already exist, is then considered, but it appears impossible
to achieve a thermodynamically consistent solution for the GMSA according to the consistency
prescriptions adopted. Other possible implementations of the thermodynamic consistency of the
GMSA for HSMs and other multicomponent fluids are discussed.

1. Introduction

Recent developments of simulation techniques and of theoretical approaches [1–4] have
improved our knowledge of the phase diagram of binary hard-sphere mixtures (HSMs) and
led to new and decisive contributions to the highly controversial debate about the occurrence
and nature of phase separation in these fluid systems [2–9]. Further advances in this same
field concern the prediction of the equation of state (EOS). The well-known semi-empirical
Mansoori–Carnahan–Starling–Leland (MCSL) [10] EOS, together with more recent schemes
based either on virial expansions exact up to the fifth virial coefficient [11–13], or on exact
conditions satisfied by the mixture in the special limit where one of the components corresponds
to point particles [14], constitute a remarkable body of information in this respect.

However, an accurate and complete description of HSMs at the level of structural
distribution functions seems still to be lacking. Such knowledge would be of considerable
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interest both as regards the reference role played by HSMs in perturbation theory descriptions
of many model fluids [15] and for helping us to achieve a general understanding of packing
properties of multicomponent systems. In particular, it would be worthwhile to fill this
information gap for HSMs characterized by strong size asymmetries and high dilutions of
the bigger-sized species; actually, such a parameter regime is appropriate to model colloidal
suspensions, a class of systems whose phase behaviour and microscopic structure have been
objects of intense investigation in recent years [16]. Unfortunately, the simulation structural
data hitherto published for such regimes of HSMs are somewhat sparse [4,17,18], basically due
to the great difficulties arising in the statistical sampling of the phase space for such mixtures;
this same circumstance has hampered rigorous and extensive tests of fluid-state theories.
Moreover, it is known that some of the most refined theories applied to highly asymmetric
HSMs do not even possess solutions beyond a certain instability line in the parameter space,
usually identified as the spinodal of the theory [4, 6].

In this paper we focus our attention on the application of integral equation theories of
the fluid state to HSMs. We consider, in particular, the generalized mean-spherical approx-
imation (GMSA [19]) and the Rogers–Young (RY [20]) approximation. As is known from
previous studies [4, 21, 22], the RY approximation yields reasonably accurate structural and
thermodynamic properties even in rather extreme parameter regimes for HSMs; in contrast,
such an extensive test of the GMSA performances seems still to be lacking.

Our interest in assessing the accuracy of the GMSA is justified by several circumstances.
First, the theory is solvable by algebraic means and provides explicit analytical expressions
for a number of thermodynamic quantities. It thus should allow an efficient investigation of
those portions of the phase diagram amenable to description in terms of a fluid-state theory
(supplemented by some one-phase freezing criterion [9, 21, 23, 24] for the prediction of the
freezing line). Second, an analytic solution scheme should not encounter the stability problems
frequently met by the iterative procedures employed in the RY and other integral equation
theories of the fluid state [15,21,25]. It is worth observing however that, as we shall comment
on further later, in the GMSA case also there are regions of the parameter space where it turns
out to be impossible to achieve a physical solution, or any solution at all [26].

Our solution for the GMSA is obtained through the scheme reported in the work by
Arrieta et al [26], which we implement in a thermodynamically self-consistent framework.
Specifically, we impose the equality of the virial and fluctuation route estimates of the
osmotic isothermal compressibilities by introducing in the theory two internal consistency
constraints [21,22]. We further impose one external consistency condition by fitting the GMSA
EOS to the MCSL value for all of the states investigated. A somewhat similar application of the
GMSA to charged hard spheres of equal size has been recently reported by other authors [27];
we are not aware, however, of other attempts to impose a partially internal thermodynamic
consistency of the GMSA for hard-sphere mixtures [28].

The paper is organized as follows. In section 2 we present the model and the theories.
Results and a discussion are reported in section 3. The conclusions follow in section 4.

2. Model and theories

We consider a binary system of hard-sphere particles interacting through the pair potential

vij (r) =
{

∞ r < σij

0 r > σij

(1)

where σi is the diameter of particles of the ith species, σij = (σi + σj )/2 and i, j = 1, 2.
We describe our mixture in terms of the size asymmetry ratio � = σ1/σ2, the partial and
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total number densities of particles ρi and ρ, respectively, and the concentration of particles
of species i, χi = ρi/ρ. The Ornstein–Zernike (OZ) equation for the homogeneous mixture
is [15]

hij (r) = cij (r) +
2∑

k=1

ρk

∫
cik(|r − r′|)hkj (r

′) dr′ (2)

where hij (r) = gij (r) − 1 and cij (r) are the pair and the direct correlation function, resp-
ectively, and gij (r) is the radial distribution function. We first observe that, because of the
form (1) of the potential,

hij (r) = −1 r < σij . (3)

Then, the GMSA closure to the OZ equation is written in terms of a Yukawa ‘ansatz’ for
cij (r):

cij (r) = Kij

exp[−z(r − σij )]

r/σij

r > σij . (4)

The solution of the OZ equation (2) under the closure (4) is obtained in a semi-analytical form
by solving numerically a non-linear system of eight algebraic equations. We refer the reader to
the previously quoted paper by Arrieta et al for a detailed description of the solution procedure.

As observed in the introduction, in the GMSA various thermodynamic quantities of interest
turn out to be written as explicit functions of the solution variables [26]. This happens, for
instance, for the contact values of the radial distribution functions (rdfs) entering the virial
EOS expression(

βP

ρ

)vir

= 2π

3
ρ

∑
ij

χiχjσ
3
ij gij (σij ) (5)

(β = 1/kBT with kB the Boltzmann constant) which we set equal to the MCSL pressure;
that is, (

βP

ρ

)vir

= 6

πρ

{
ξ0

(1 − ξ3)
+

3ξ1ξ2

(1 − ξ3)2
+

ξ 3
2 (3 − ξ3)

(1 − ξ3)3

}
(6)

with

ξk = πρ

6

(
χ1σ

k
1 + χ2σ

k
2

) = π

6

(
ρ1σ

k
1 + ρ2σ

k
2

)
. (7)

(Note that ξ3 = ∑
i (π/6)ρiσ

3
i is the total packing fraction. In what follows we shall adopt for

this same quantity the notation η = ∑
i ηi with ηi = (π/6)ρiσ

3
i the partial packing fraction

of species i.) Equation (6) acts as an external consistency constraint of the GMSA. We then
force the theory to satisfy two internal consistency constraints by imposing the equality of the
two osmotic compressibilities as evaluated from the virial and fluctuation routes [6, 21]. We
thus obtain the two equations

1 −
∑

j

ρj c̃ij (q = 0) =
(

β
∂P

∂ρi

)vir

T ,ρj (j �=i)

(8)

where c̃ij (q) is the Fourier transform of the direct correlation function cij (r)

In order to satisfy conditions (6) and (8) we use as adjustable parameters K11, K22 and z

appearing in equation (4); the remaining fourth parameter K12 is fixed according to the Lorentz–
Berthelot rule [15] K12 = √

K11K22. The values of Kij and z for which the thermodynamic
consistency is obtained for the various mixtures examined are reported in table 1.
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Table 1. Yukawa parameters yielding thermodynamic consistency of the GMSA solution for the
different HSMs investigated (see section 3).

� η χ2 MC LLa MHNCb RY GMSA PY

g11(σ11)

0.333 0.45 0.01978 4.60c 3.89 3.81 3.78 3.83 3.53
0.45 0.0625 3.30c 3.30 3.25 3.18 3.24 3.10

0.3 0.3 0.0625 1.92d 1.93 1.91 1.91 1.89
0.49 0.0625 3.57d 3.60 3.68 3.44 3.53 3.37

0.1 0.3 0.05 1.55 1.54 1.54
0.5 0.05 2.44 2.35 2.33

g12(σ12)

0.333 0.45 0.01978 5.60c 5.20 5.07 5.04 5.30 4.39
0.45 0.0625 4.20c 4.19 4.11 4.10 4.20 3.74

0.3 0.3 0.0625 2.22d 2.19 2.22 2.26 2.14
0.49 0.0625 4.70d 4.68 4.54 4.55 4.69 4.13

0.1 0.3 0.05 1.62 1.63 1.62
0.5 0.05 2.62 2.67 2.66

g12(σ12)

0.333 0.45 0.01978 6.70c 10.2 10.4 10.5 10.6 6.96
0.45 0.0625 8.00c 7.47 7.45 7.73 7.67 5.66

0.3 0.3 0.0625 3.55d 3.02 3.42 3.56 2.96
0.49 0.0625 10.18d 9.21 7.64 9.67 9.49 6.66

0.1 0.3 0.05 2.56 2.69 2.50
0.5 0.05 5.98 6.92 5.47

a Lee–Levesque data from references [17, 29].
b MHNC data from reference [22].
c MC data from reference [17].
d MC data from reference [18].

We have also solved the OZ equation in the RY approximation. As is well known, in this
theory one assumes

gij (r) = exp[−βvij (r)]

{
1 +

exp{fij (r)[hij (r) − cij (r)]} − 1

fij (r)

}
(9)

where fij (r) = 1 − exp[ξij r] and the ξij are adjusted in such a way as to satisfy the thermo-
dynamic consistency of the theory. In the present implementation of the RY approximation we
assume all ξij = ξ and we fix this parameter by requesting the equality of the fluctuation and
virial bulk isothermal compressibilities, a condition easily obtained by summing both sides of
(8) over the two component species. RY results for HSMs with two consistency parameters
have also been obtained by us in a previous work [22]; we find however that they do not differ
significantly from those obtained with one parameter.
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The solution for the RY approximation is obtained numerically by employing the well-
known Gillan algorithm [25] on a spatial grid of 4096 points spanning over 42σ1 in r-space.

3. Results and discussion

All the results reported in this section will concern HSMs characterized by an intermediate-to-
high size asymmetry and by a high dilution of the bigger-sized component. We first consider
the � = 0.3, χ2 = 0.0625 case and compare the GMSA and RY results with MC data [18]
and with the MHNC results obtained by us in a previous paper [22]. The rdfs are shown in
figure 1, while the EOS and the contact rdfs are reported in tables 2 and 3, respectively.

Table 2. Equations of state of the HSMs at different state points (see the text for the meaning of
the symbols).

� η χ2 MC MCSL MHNCa RY GMSAb PY

βP/ρ

0.333 0.45 0.01978 8.40c 7.47 7.35 7.31 7.46 6.74
0.45 0.0625 6.27c 6.21 6.14 6.11 6.21 5.68

0.3 0.3 0.0625 2.79d 2.78 2.75 2.78 2.80 2.71
0.49 0.0625 7.15d 7.08 6.88 6.93 7.07 6.33

0.1 0.3 0.05 1.80 1.79 1.80 1.80
0.5 0.05 3.42 3.30 3.42 3.27

a MHNC data from reference [22].
b GMSA data: the best fit obtained to the MCSL equation of state.
c MC data from reference [17].
d MC data from reference [18].

Table 3. Contact values of the radial distribution functions for the HSMs examined in table 1.

� η χ2 z K11 K22

0.333 0.45 0.01978 6.56 0.90 21.80
0.45 0.0625 4.84 0.49 13.08

0.3 0.3 0.0625 2.54 0.06 2.74
0.49 0.0625 4.85 0.57 20.87

0.1 0.3 0.05 0.62 0.001 4.05
0.5 0.05 1.23 0.02 34.92

The RY gi,j (r) appear to be in almost quantitative agreement with the MC patterns [18]
at both low and high packing fractions, and are only slightly less accurate than the MHNC
ones [22]. The positions of the main features of the rdfs are fairly well predicted by the GMSA,
but the amplitudes are only qualitatively reproduced. In particular, the main GMSA deficiency
is the tendency to overestimate the emptying zone of g22 and g12 between the first and the
second coordination shell. Something similar has been observed to happen in the so-called
rational function approximation to HSMs, an approach that according to the authors of [30]
yields results substantially equivalent to those from the GMSA scheme.
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Figure 1. Radial distribution functions at � = 0.3, χ2 = 0.0625, for two different total packing
fractions. σ1 = σ is the unit of length. MHNC data from reference [22]; MC data from ref-
erence [18]; RY and GMSA data: this work.

We do not report in figure 1 a comparison with the Percus–Yevick (PY) rdfs; these have
been calculated and compared with MC data in reference [18]. On the basis of that study it
appears that in the first-minimum region the PY functions are more accurate than the GMSA
ones; however, as documented in table 3, the PY contact rdfs are definitely poorer than the
GMSA estimates, while the latter are fairly close to the MC values with the exception of
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g22(σ22) at η = 0.49. It also appears that the RY contacts are almost always slightly smaller
than the MC and GMSA counterparts.

We also report in table 3 the comparison of the contact rdfs for the slightly less asymmetric
case of � = 0.333 and η = 0.45 previously investigated in reference [17]. The results at
χ2 = 0.0625 confirm for both the RY approximation and the GMSA a level of accuracy
comparable to that for the � = 0.3 case. At the lower value χ2 = 0.0198, the comparison
with the MC data is apparently less favourable; in fact the RY, the MHNC and the Lee–
Levesque [29] gij (σij ) are all fairly close to each other (again with the RY results generally
smaller than the GMSA ones) but they are appreciably different from the simulation values;
on the other hand, the theoretical estimates of the EOS (which involve the gij (σij ) through
equation (5)) reproduce the MCSL value well, as is apparent from table 2. It is worth noting
at this stage that, as explicitly pointed out in reference [17], the MC gij (r) at � = 0.1 and
χ2 = 0.0198 were obtained with only a limited statistics; such a circumstance can explain
the particularly low value of the MC g22(σ22) and the above-described discrepancy between
theory and simulation.

We now consider the high-size-asymmetry case with � = 0.1 at concentration χ2 = 0.05
(see figure 2). No simulation data are available here for an assessment of the theoretical
predictions. The RY and GMSA gij (r) appear here to be in quite good agreement with each
other and considerably less structured than in the � = 0.3 case at the two packing fractions
investigated. This can be explained if one considers that at � = 0.3 and η = 0.49, the
partial packing fraction of the bigger spheres, η2 = 0.349, is of the same order of magnitude
as that of the smaller spheres, η1 = 0.141, whereas at � = 0.1 and η = 0.5 one has
η2 = 0.491 � η1 = 0.009. It follows that in the more asymmetric case the structure of the
system is entirely dominated by the arrangement of the large spheres despite their relatively
smaller concentration. In the � = 0.3 case, however, the rdfs indicate the presence of different
ordering length scales related to the sizes of the component particles. A good overall reciprocal
agreement between the GMSA and the RY approximation is also found for the contact rdfs,
as documented in table 3, but, similarly to what was found at the higher �s, the RY g12(σ12)

and g22(σ22) are definitely smaller than the GMSA ones. The PY values are also fairly good,
except for g22(σ22).

As far as the EOS is concerned, the RY and the GMSA results are in close agreement
with each other and with the MCSL results (see table 2). We recall that, as recently shown in
reference [31], the RY approximation for this � reproduces fairly accurately the MCSL EOS
at the higher value χ2 = 0.1 also. The PY prediction is also quite good in this case.

We finally examined the very dilute case with � = 0.1, χ2 = 0.003 (corresponding to
η1 = 0.072, η2 = 0.244) previously investigated in reference [4] through both RY approx-
imation and simulation. It was shown in [4] that the RY rdfs are on the whole in good agreement
with simulation but the theory appears to significantly underestimate the MC contact rdfs. On
the basis of this and the other comparisons with MC data just reported, it appears that the
tendency of the RY approximation to underestimate the contact rdfs is systematic in the low-
concentration regime. Since our GMSA contact rdfs are generally somewhat higher than
the RY ones, it seems possible to conclude that the former theory should predict the gij (σij )

reasonably well in the previously considered case of � = 0.1, χ2 = 0.05.
It would be interesting to verify whether such accuracy also holds in the very dilute

χ2 = 0.003 regime, where comparison with MC data [4] is possible. Unfortunately, we
could not find a thermodynamically consistent solution for the GMSA in this case. What
we find, in fact, is that the lower χ2 is, the smaller the parameters K11 and z become (in
terms of which conditions (6) and (8) are satisfied). This trend, already visible in table 1 at
the lowest packing fractions considered there, is confirmed with χ2 decreasing below 0.02,
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Figure 2. Radial distribution functions at � = 0.1, χ2 = 0.05, for two different total packing
fractions. See figure 1 for the notation.

where we find that K11 tends to attain values of the order of 10−4, and z approaches 0.2, until
the Newton–Raphson algorithm for the solution for the GMSA fails to converge. Now, as
mentioned in the introduction and shown by Arrieta et al [26], there are regions of the (Kij , z)

parameter space for which it turns out to be impossible to obtain a solution for the GMSA;
the present failure to obtain thermodynamic consistency might then be due to the fact that,
in imposing the latter, we are actually forcing the theory to work in a forbidden parameter
region.
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4. Conclusions

We have studied the structure of size-asymmetric semi-dilute hard-sphere mixtures in the
framework of the thermodynamically self-consistent RY and GMSA theories. In particular,
we have presented a new implementation of the thermodynamic consistency of the GMSA, in
which both internal and external consistency constraints are imposed.

For moderate asymmetries, the GMSA structural functions turn out to be in qualitative
agreement with simulation and with the RY predictions.

The semi-dilute regime of the bigger-sized particles has also been studied in a highly asym-
metric configuration: the GMSA and RY rdfs obtained compare quite well with each other but
no simulation data are available in this case for an assessment of the theoretical predictions.

Finally, attempts have been made to obtain a solution for the GMSA for a highly
asymmetric mixture in a regime of concentration of the big particles so dilute that the
partial packing fractions of the two component species become roughly of the same order
of magnitude. Both RY and MC results would be available in this case for comparison;
unfortunately, it turns out to be impossible to obtain a thermodynamically consistent solution
for the GMSA in such a regime. This failure seems to be related to the tendency exhibited by
two of the consistency parameters (one of which is the Yukawa decay inverse length z) to attain
too-small values when the concentration of the bigger particles dramatically decreases. It would
be interesting to verify to what extent these difficulties depend on the specific implementation
of thermodynamic consistency that we have chosen. In particular, one could ascertain what
the effect is of varying the prescription which fixes the cross Yukawa amplitude K12 in terms
of K11 and K22; alternatively, one could adopt an easier consistency scheme employing only
two parameters, namely z and one of the Kij (K22, say) with the other Ks appropriately scaled
on the basis of the results obtained for less extreme asymmetry and concentration regimes.
Calculations in this direction are in progress.

Despite these limitations, the good overall performance of the GMSA might be of interest
in view of the semi-analyticity of this theory. For instance, a GMSA investigation of the
spinodal line of HSMs could prove useful, since iterative theories do yield considerably
different predictions for that phase stability boundary [4].

The experience gained with HSMs could also prove useful in generalizing our GMSA
consistency scheme to hard-core Yukawa mixtures (HCYM) (that is, hard spheres interacting
through a Yukawa tail). A two-Yukawa-function ansatz for the direct correlation function [32]
generalizing the closure (4) of the Ornstein–Zernike equation would be appropriate for this
purpose: in such a scheme one of the Yukawa functions could be equated to the potential in a
MSA-like closure, and the parameters of the second Yukawa function could serve to impose
the thermodynamic consistency. A supplementary (with respect to the hard-sphere system)
consistency condition would be provided in this case by the energy route to the equation of
state. As is well known, hard-core plus Yukawa tail interactions are currently used to roughly
model protein solutions [33] and the GMSA approach could be useful in order to study, at a
qualitative level, the phase diagram of these systems, especially since their computer simulation
investigation is seriously hampered by the strong size asymmetry and the deep potential wells
characterizing the model potentials adopted.
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